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Analysis of Miniature Electric Field Probes
with Resistive Transmission Lines

GLENN S. SMITH, SENIOR MEMBER, IEEE

A bstract— The miniature dipole probe is a useful tool for measuring the
electric field at high radio and microwave frequencies. A common design
for the probe consists of an electrically short dipole antenna with a diode
across its terminals; a resistive, parallel-wire transmission line transmits the
detected signal from the diode to the monitoring instrumentation. The high
resistance per unit length of the transmission line reduces the direct
reception of the incident field by the line and also reduces the scattering of

the incident field by the line. In addition, the resistive transmission line

serves as a low-pass filter in the detection process. In this paper, the effect
of the resistive transmission line on the operation of the miniature field
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probe is analyzed. Specifically, the reception of the incident signal by the
transmission line is compared with that of the dipole. The scattering of the
incident signal by the transmission line is studied by means of the scatter-
ing cross section, and the limitation imposed on the measurement of
amplitude-modulated signals by the low-pass filtering by the resistive line is
examined. The results of the theoretical analyses are presented as simple
formulas which are useful in the design and optimization of the probe. The
theoretical results are shown to be in good agreement with measurements.

I. INTRODUCTION

N MANY practical applications of electromagnetism at
high radio and microwave frequencies, an accurate mea-
surement of the electric field in free space or in a material
medium is required. Examples are the calibration of elec-
tromagnetic shielded rooms and anechoic chambers, the
measurement of the near field of transmitting antennas,
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Dipole receiving probe.

and the sensing of fields in and around transmission lines
and waveguides. In addition, the recent interest in the
biological effects of nonionizing electromagnetic radiation
has created a need to measure the electric field in free
space for hazard assessment of emissions from devices,
such as microwave ovens, and in biological tissue or simu-
lated tissue to provide dosimetry for controlled bioclectro-
magnetic experiments.

The electrically short receiving dipole antenna is ideally
suited to this measurement, because the voltage produced
at its terminals is proportional to the component of the
incident electric field E’ that is parallel to its axis. With
reference to Fig. 1, the terminal voltage V' is

V=K,E'z

(1)
where K, is the constant of proportionality. For a practical
probe, a connection that does not perturb the measurement
of the electric field must be made between the dipole and
the instrumentation that monitors the voltage V. A number
of dipole probes have been constructed using the basic
connection shown schematically in Fig. 1. The operation of
this probe is fairly simple. For an amplitude-modulated
incident field, the dipole produces an amplitude-modulated
oscillating voltage across the diode at its terminals. When
the diode is operating in its square-law region, a current
proportional to the square of the modulating signal is also
developed at the diode. For example, a continuous wave
field produces a direct current at the diode. This current is
passed through the low-pass filter formed by the lossy
transmission line to the monitoring instrumentation. Thus
a signal proportional to the square of the amplitude modu-
lation on the incident field is measured. The high resistance
per unit length of the lossy transmission line reduces the
signal received directly by the line and transmitted to the
diode; it also reduces the scattering of the incident field by
the transmission line. In some probe designs, an additional
discrete-clement low-pass filter is placed between the diode
and the transmission line as the insert in Fig. 1 shows.
The transmission lines for early versions of this probe
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were constructed from very thin metallic wire with a typi-
cal resistance per unit length being 0.1-1 k& /m [1], [2].
Later versions used a “semiconducting” line developed by
the U.S. National Bureau of Standards (NBS) [3]. This line
is formed from polytetrafiouroethylene (Teflon) impreg-
nated with finely divided carbon black; the resistance per
unit length for a 0.76-mm-diameter filament is about 65.6
kQ/m.! Typical lengths for the dipoles of these probes
were 22=1.0-5.0 cm. The miniature field probes recently
developed for biological applications have dipoles which
are much smaller in length, 22=1.5-8.0 mm [4]-[7]. Both
electrical and biological considerations require the dipoles
to be at least this small. The conductors of the transmission
lines for these miniature probes are formed by depositing a
thin film of a metallic alloy on a dielectric substrate; a
typical resistance per unit length being 1-10 MQ /m. Cur-
rent interest is in utilizing the technology of microwave
integrated circuits to produce even smaller dipole probes
(2h~0.5 mm) for use in in vivo bioelectromagnetic dosime-
try. When these probes are fully developed, they will have
many applications in addition to those in the area of
bioelectromagnetics. The design and the fabrication of the
lossy transmission lines for these very small probes are
critical, particularly if the performance of the combination
of the dipole, diode, and transmission line is to be opti-
mized. The empirical procedures used in the past may not
be sufficient for this purpose.

It is the purpose of this paper to present theoretical
electromagnetic analyses, supported by experimentation,
for the combination of the electrically short dipole and the
lossy transmission line. Specifically, i) the direct reception
of the incident signal by the transmission line is evaluated
and compared with that for the dipole, ii) the scattering of
the incident signal by the transmission line is studied by
formulating the scattering cross section for the line, and iii)
the behavior of the lossy line as a low-pass filter is ex-
amined. The results of the analyses are presented as simple
formulas that can be used for probe design and optimiza-
tion.

Only the single dipole with a lossy transmission line in
free space is examined. Methods for combining three di-
poles to obtain an isotropic response and the special tech-
niques, such as insulating the dipole, that are used to
improve the response of the probe when immersed in a
material medium are discussed in the literature [4]-[11].

II. FORMULATION OF THE PROBLEM

Fig. 2 shows the model used in the analysis for the
electric field probe. The dipole and the transmission line
are orthogonal; the axis of the dipole is parallel to the z
axis and the axis of the transmission line is paralle] to the y
axis. The dipole has half length 4 and conductor radius a,
while the transmission line has length s, conductor radius
a;, and conductor spacing b. Lumped impedances Z, and
Z (admittances Y, and Y,) are connected at the ends of the

"This material is now commercially produced under the trade name
Conductive Fluorosint by the Polymer Corporation, Reading, PA 19603.
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Fig. 3. Schematic diagram showing reception of incident signal.

transmission line, y =0 and y=s, respectively. In an actual
probe, these elements would represent the linear high-
frequency impedance of the diode and the input impedance
of the monitoring instrumentation. Note that the discrete
element low-pass filter in Fig. 1 is not included in the
model, but it can be added easily if needed. The incident
signal is a linearly polarized electromagnetic plane wave
propagating in the direction specified by the angles 6, ¢,
with the electric field

E'(r,w):Eé +E,;,:E'(COSII/,3A, +Sinl[/,(’1\),)e_jk" (2)
where
k-r=—pBy(xsinf,cos ¢, +ysinb sing, +zcosb,). (3)

A complex harmonic time dependence e’/*’ is assumed, and
By = w/iq€q 1s the propagation constant for free space.
The incident wave produces currents in the dipole and in
the transmission line. The current in the transmission line
can be split into two components: the differential-mode
current Ipy,, which is equal in amplitude in the two con-
ductors, but opposite in direction, and the common-mode
current I, which has equal amplitude and the same
direction in both conductors, see Fig. 3. The differential-
mode current Iy, goes through the terminal impedances
Z, and Z_and is responsible for the direct reception of the
incident signal by the transmission line; the common-mode
current is zero in the terminations. The common-mode
current, however, is the source of the scattered electromag-
netic field for the transmission line. The scattered field can
produce currents in nearby objects, and these, in turn, can
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Fig. 4. Norton equivalent circuit for dipole-transmission-line reception.

produce a secondary field received by the dipole or trans-
mission line, see Fig. 3. Thus the currents Iy, and I are
the sources of two errors produced in the measurement,
viz., the direct reception of the incident signal by the
transmission line, and the scattering of the incident signal
by the transmission line that can result in the reception of
an erroneous signal by the probe.

In the study of the combination of the dipole and
transmission line, the reception by the transmission line,
i.e., the differential-mode current I, (y=0) in the imped-
ance Z,, is calculated and compared to the reception by
the dipole antenna, i.e., the antenna current I, (z=0) in
the impedance Z,. The degradation of the receiving pattern
for the dipole by the transmission line is then examined.
The effect of the scattering of the incident wave by the
transmission line on the reception by the dipole cannot be
completely assessed unless a description of all objects near
the probe is provided. A measure of the effect, however,
can be obtained by considering the general scattering prop-
erties of the transmission line and comparing these with the
scattering properties of the dipole. This is done by for-
mulating the total scattering cross section and the back-
scattering cross section for broadside incidence of the
dipole and the transmission line separately.

In the analysis, the electromagnetic coupling between the
dipole and the orthogonal transmission line is ignored, and
the only interaction considered between these elements is
at their connection.

III. RECEPTION OF THE INCIDENT WAVE

The reception of the incident signal by the combination
of the dipole and the transmission line is analyzed using
the Norton equivalent circuit shown in Fig. 4. In this
circuit, the current generators I,q- and I, .~ are the cur-
rents that would be produced by the incident field in a
short circuit at the terminals of the dipole and at the left
terminals of the transmission line, respectively, and the
admittances Y, and Y; are those for the driven dipole and
the driven transmission line (the input admittance of the’
line terminated with the impedance Zg). For an electrically
short dipole (B,2< 1) the circuit elements are

Iigc~—hE'cosy,sinf,Y, (4)
Y ~jaBoh/$o[n(h/a)—1] (5)

where terms of order ( 8,4)” or less have been ignored, and
$o =VMo /€, is the impedance of free space [10]. The input
admittance for the transmission line is simply

B A AT
Y Y tan (s +

(6)
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where the complex wavenumber k, and the characteristic
admittance Y, (impedance Z,) are expressed in terms of the
series 1mpedance per unit length z, and the shunt admit-
tance per unit length y;

kp=B,—ja,=V—z )1 (7
Y, =1/Z.=\y, /2 - (8)

The series impedance per unit length is the sum of the
internal impedance per unit length of the conductors 2z
and the impedance of the external inductance per unit
length /¢

zL=2zi+jwle=2r’+jw(21'+le) (%)

and the shunt admittance per unit length is the sum of the
conductance per unit length g, and the admittance of the
capacitance, ¢, per unit length

(10)

Note that the internal impedance per unit length of each
conductor is z', requiring the factor of two in the loop
impedance per unit length (9). It remains to determine the
‘equivalent current generator for the transmission line I; g¢
by analyzing the excitation of the line by the incident field.

The effect of the incident electromagnetic field on the
transmission line is equivalent to a distributed series volt-
age source and a distributed shunt current source [12}, {13],
see Fig. 5. For a general incident field E'(x, y,z),
B'(x, y, z), the equivalent voltage and current sources per
unit length of the line are

y=gtjwc.

b/2 .
s B0, y.2) (1)
d
. b/2
)=y [ B0y 2) dz. (12)

These sources appear on the right-hand sides of the trans-
mission-line equations for the differential-mode voltage
and current

o) (=0 (0)
?“I_DéMy_(y_)+YLVDM(y):gs(Y)- (14)

After combining (11)-(14) and using Maxwell’s equations,
the following partial differential equations of the second
order are obtained for the voltage and the current in the
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transmission line:

0%V,
Poul) s i)z [ 0.y,
3y?
3B’ 0 ,
/b/Z ( Yy )dz (15)
b/2
0 IDM(y)

+kLIDM(y) )’L[E (0, y,b/2)

—EN0,y,—b/2)]. (16)

The solution of the differential system consisting of (15),
(16), and the boundary conditions Vpp(0)= —Z;Ip\(0),
Vom(8)=Z,Ip(s) is straightforward [12], [13]. Specifi-
cally, the solution for the current at the left termination of
the line, y=0, is

Ipm(0)= {[stin k,s+cosk,s]
.fb/z EX(0,0, z)dz—fb/2 E!0,s,z)dz
~b/2 ~b/2
§ . .
~ [[Ei©, »,b/2)~E}(0, y,—b/2)]
0

-[stin kL(y—s)—coskL(y——s)] dy} /Z.D

(17)
where
D=j(1+Z,Z,)sink,s+(Zy+2Z,) cosk,s

(18)

and the normalized impedance Z (admittance Y)is Z=
Z/Z,(Y=Y/Y,). When the incident field (2) is substituted
into (17), the inequality B,b<1 used, and the integrals
evaluated, the current becomes

Ipn(0)=(E'/2Z,){cos ][ (cosk s
— g/Possind,sing) (sin g sing, +k Z;)
+jsink,s(Z,sin6;sing, +k, )]
-[cos 8 sing,cos ¥,
+cos ¢,siny,] / (k2 —sin® §,sin® ¢, )
—sin jZ,sin k s+ cos ks — esbossinf.sin]

.cosdz,}/D (19)

where k; =k, /B,- The current generator I;4., which ap-
pears in the Norton equivalent circuit of Fig. 4, is de-
termined by setting Z, equal to zero in (19)

ILsc:IDM(O)|ZO:0-

With the values of elements in the equivalent circuit of
Fig. 4 given by (4)—(6) and (20), the oscillating voltage V'

(20)



SMITH: MINIATURE ELECTRIC FIELD PROBES

across the terminals of the load impedance Z; (admittance
Y,) is determined

V== (Lysc Hse) /(Y + Y+ 1), (21)
From this equation it is seen that the relative reception of
the incident field by the dipole and the transmission line
can be evaluated by comparing the two components of the
total short-circuit current I ¢ =1,5-+1I;gc. For the spe-

cial case of interest, the high loss per unit length of the

transmission line introduces the inequality
!efjk,_slze—aLs<<1

(22)

which simplifies greatly the expressions for the current I,
and the admittance Y,

Isc~(E'b/Z,) [cos 0,(cos 8, sin ;cos ¢,
+cos¢,siny,) /(k, —sinf;sin¢, )

—siné,cos xp,]
Y, ~Y,.

(23)
(24)

After combining (4) and (23), the total short-circuit current

becomes
_ —jmweBPE! |
ITSCNln(h/aA)-l {smBlcos\l/,

- x[cos 0,(cos 6,sin ¢, cos ;l/i
+cos ¢ siny,) /(1 —sind,sin¢, /i, )

—ksinf,cos 1[/,]} (25)

where the parameter x is
In(h/a,)—1
X=—————

S b/ Go/zih). (26
Note that after the use of (22), the current I is indepen-
dent of the length s of the transmission line and the load
impedance Z_.

Additional simplification of (25) is possible if assump-
tions are' made concerning the impedance z, and the
admittance y, per unit length of the transmission line. For
a line with negligible conductance per unit length g~0 and
a high resistance per unit length 2r' > w(20° +1°)

z;=2r' oy Ajec (27)
which makes
k, = —jw2ric /By =yr'/wl¢ (1—j) (28a)
thus _
lkp[>1. (28b)
With these results, (25) becomes
N —jrwe P E’
ITSCN ln(h/aA)—-l {FA(O,)cos¢,
_X[FLl(ai’ ;) cosy; +Fp,(6;,¢,)siny;
_ELFA(Q')COS‘IG]} (29)
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where
F,(8,)=sin, (30a)
F;,(6,,¢,)=cos?;sin ¢, (30b)
F;,(6,,¢;)=cosf;cos ¢, (30c)
and

xr BDT ¢, 2em). )

The first term in the braces in (29) results from the
reception of the incident field by the electrically short
dipole antenna, the remainder, i.e., the terms with the
coefficient x, is due to the reception by the transmission
line. A careful examination of these terms will indicate the
effect of the transmission line on the response of the
electric field probe. The response of the dipole antenna,
specified by the function F,(8,), is to the §, component of
the incident electric field, and it has the familiar figure-eight
shaped polar field pattern shown in Fig. 6. The response of
the transmission line has three terms, the last of these has
the same form as the response for the dipole, F,(8,), and
simply contributes to the desired response for the probe.
The other two terms are responses to the 6, and ¢, compo-
nents of the incident field and are proportional to the
functions F;,(6;,¢;) and F;,(8, ¢;), respectively. The
former causes the pattern for the probe to deviate from
that for the dipole, particularly in the vicinity of the nulls,
and the latter causes the probe to respond to an electric
field orthogonal to the dipole. Polar patterns for the func-
tions F;,(6,,¢,) and F; (8, ¢;) in the principal planes are
shown in Fig. 6.

For purposes of discussion, it is convenient to combine
the terms proportional to F,(6,, ;) in (29) and introduce
the normalized current Ipg.

irsczlrsc/{_jwfoh2(1 +I€LX)Ei/[ln(h/aA)_1]}
=FA(0I)COSIIJI~_)_([FL1(0”qﬁl)COS\lll

+FL2(0H 4’.) sin ¢1] (32‘)
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where

x=x/(1+k.x)

=x/ {1+ (b/m)(kso /2rm) [t (h/a) =1] /7}.

(33)
The deviation of the normalized response of the probe (32)
from that of the ideal dipole, the error in the response, is
simply proportional to the complex parameter ¥ (33). The
magnitude of this parameter is always less than the real
parameter x (31), |x|<x, and for many practical designs
|k ;x| <1, so that x~x. Therefore, the real parameter x is a
useful measure of the error in the response of the probe.
Note that the product of the dimensionless ratios (b/h)
and (§, /r'h) appears in the expression for x. Thus if the
length ~ of the dipole in a probe is to be reduced by a
factor ¢ without increasing the error (x) in the response,
the spacing between the conductors of the transmission
line must be decreased by the factor £ and their resistance
per unit length must be increased by the factor 1/¢.
Alternatively, only the spacing or the resistance need be
changed, but then by the factors £2 and (1/£€)?, respec-
tively. Note that x is not a function of the frequency when
the resistance per unit length r* is frequency independent.
To illustrate the error introduced in the response of the
probe by the transmission line, rectangular field patterns
are shown in Fig. 7 for a probe with the parameter x=0.3
(Jk . x|<1). The reception by the transmission line is seen
to cause the pattern of the probe in the plane ¢, == /2,
37 /2 for an incident field Ej, Fig. 7(a), to deviate from
that of the ideal dipole |sin8,|. The width of the lobe in the
half plane ¢, = /2 is decreased, while the width of the
lobe in the half plane ¢, =37 /2 is increased. The nulls in

the pattern are shifted by approximately the amount

a=sin~'[(1+4x> —1) /2x] ~x,

which for this example is about 16.1°. In the plane ¢, =0, 7,

X<<1 (34)

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-29, NO. 11, NOVEMBER 1981

the pattern of the probe for an incident field Ej, Fig. 7(b),
is the same as that of an ideal dipole; however, there is a
response to an incident field E; that does not exist for the
ideal dipole.

IV. SCATTERING OF THE INCIDENT WAVE

The currents produced in the dipole antenna and the
transmission line by the incident field are the sources of
the secondary or scattered field. With reference to Fig. 3,
the current I, is the source of the scattered field for the
dipole antenna. At distances from the transmission line
that are large compared to the spacing of the conductors b,
the field of the common-mode current /-y, is much greater
than that of the differential-mode current Iy, Thus the
common-mode current I, is the major source of the
scattered field for the transmission line. In the analysis of
the scattering from the probe, the scattering from the
dipole antenna and the transmission line will be evaluated
separately and compared. As in the analysis of the recep-
tion by the probe, Section I1I, the electromagnetic coupling
between the dipole and the orthogonal transmission line is
ignored.

The scattering cross sections are convenient quantities
for comparing the relative scattering from the dipole and
transmission line and for studying the effect of parameters,
such as the resistance per unit length of the transmission
line, on the scattering. The cross sections considered are
the total scattering cross section ¢, which is the ratio of the
total time-average power scattered P° to the time-average
power density of the incident wave S’

o(6,,9,:4,)=P/S" (35)

and the backscattering cross section o, which is the ratio

UB(BI’ ¢z; '4’1) :Pissotropic/Sl (36)
where P

sotroprc 18 the total time-average power radiated by
an isotropic scatterer that maintains the same electromag-
netic field in all directions as maintained by the actual
scatterer in the direction (4, ¢,) toward the source [14].
The total scattering cross section in terms of the incident
and scattered electric fields £’ and E® is

[ [E-(E*)*r?ag

0(0,,%;4/1):}11?0 E'-(E")*
JJ (G |3 )7 ag (
= lim 77
oo B[ )

where dQ is the element of solid angle for a sphere of
radius r that completely encloses the scatterer. The back-
scattering cross sections considered are those for an inci-
dent wave broadside to the dipole or transmission line with
the electric field parallel to the conductors. For the dipole
antenna (6, == /2,¢,=0; ¢, =0)

4nr?|Ef(0=n/2,6=0)]?
|E*|*

0y, =0p(7/2,0;0)= lim

(38)
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and for the transmission line (8, =0, ¢, =7 /2; ¢, =0)
47r®|E;(0=0,¢=m/2)]
E'P '

057 =05(0,7/2;0)= lim
r— oo

| (39)

When normalized to the square of the free-space wave-

length A, the well-known cross sections for the electrically

short dipole with its terminals short circuited (Z, =0) are
the total cross section [15]

0,(0:9:) /N,
=2(Byh)°sin® 6cos? 4, / {27a[In (h/a,)—1]7}  (40)
and the backscattering cross section’
OBA/}\ZO:(Boh)6/{977[ln(h/aA)_l]2}' (41)

Before the cross sections for the transmission line can be
evaluated, the common-mode current distribution Iy (y)
and the field that it produces E° must be determined. The
common-mode current in each conductor is a solution to
the following approximate integral equation: '

[ Tens)e e/
0ol 4 N o ’ ’
—jBoz j(; ICM(y )sm,BO(y—y )d)’

- —JAGE'(cos y,cos 8;sin ¢, +sin ;,cos ¢, )
¢o(1—sin’ 6,sin® ¢,)

s Porsind sing; 4 4 cos B, y+ Bsin By y
(42)

where A and B are constants to be determined by the end
conditions I\(0)=Iqy(s)=0, and the normalized inter-
nal impedance per unit length is

Z'=z%y /%,

This is the familiar integral equation for the current on a
thin-wire scatterer with the equivalent radius

(43)

a,=ya;b (44)
appearing in the distance R,
N 1/2
R=[(y=y)+al] " (45)

The equivalent radius approximately accounts for the fact
that the transmission line is composed of two closely
spaced conductors ( 8,b<1) carrying equal currents rather

than a single conductor [16]. The integral equation (42) can .

be solved for the current by any of a number of straightfor-
ward numerical methods and the scattered field and cross
sections determined [17]. Typical results are shown in Fig.
8 for the normalized total scattering cross section o; /A% of
a one-wavelength-long transmission line (s=A, a, =3.33
X 10 _3}\0) with the incident field from the direction 8, =0,

2These formulas differ from those of [15] in that the term In(44/a ) is
replaced by In(h/a ).
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Fig. 8. Normalized total scattering cross section of a one-wavelength-
long transmission line (s/A,)=1.0,a./A,=3.33X 10”?) for an inci-
dent wave with §; =0, ¢, =n/2, and ¥, =0.

¢, =m/2 and with the polarization y, =0 ( E; component
only). The cross section is shown -as a function of the
normalized internal resistance per unit length of the con-
ductors 7 =r'A, /$,, and it is seen to be reduced signifi-
cantly by an increase in the resistance once 7' is greater .
than about. 10. The three regions marked on the graph
represent typical ranges of o, /A% at a frequency of 1 GHz
for metallic wires with a radius a, =25 pm (1 mil), the

. NBS carbon-Teflon conductor, and thin-metallic-film con-

ductors. From this graph, it is clear why the high-resistance
transmission lines are. often referred to as “transparent” to
electromagnetic fields at high radio and microwave fre-
quencies.

While numerical methods can provide an accurate solu-
tion to the integral equation (42) for specific values of the
parameters, an analytic solution to the equation is more
useful in performing parametric studies. An analytic ex-
pression for the current I-(y) can be obtained by ap-
proximating the integral equation for the special case of
interest, namely, conductors with a high internal imped-
ance per unit length. The first integral on the left of (42)
has a kernel with a sharp peak at the point y=y’. This
behavior is often used in antenna theory to replace this
integral by the term YI-(y) and obtain the so-called
“zeroth-order” solution to the equation [16]. The particular
choice of the constant ¥ is not important for the purposes
of the following argument, but an estimate of its magni-
tude can be obtained from the value for an.electrically .
short antenna ¢ =2In(s/a,)—2. With this substitution, the
approximate integral equation becomes

ICM(Y)_ jﬂiz

y ) N
fOI‘CM(y’)smBo(y—y)dy
—JE"\y(cos y;cos 0, sin ¢, +sin y;cos ¢, )
§ow(1—sin’ §,sin’ ;)
-g/Borsindsing: 4 47605 B+ B'sin By y.
(46)

This is a Volterra integral equation of the second kind with
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a convolution-type kernel; its solution is easily obtained
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transmission line is

using the Laplace transformation [18] i X ¢ —1Bor
—JE'Ao(cos 8,sin ¢, cos y, +cos ¢, sin ¢, ) E* = —japo(f cos sing+gcos ) dmr
ICM(y): (1- in? 0 sin® b —jz ) g 1 ,iBoy’sinfsing g ¢
$od(1—sin”G,sin” &, —jz'/¢ -2/(‘)ICM(y )e/Po dy’ (55)
) {e Hoysinbising: — [sin ky(s—y)+sink,y which, on substitution of (54) and evaluation of the in-
. @/Bossin, sin¢,] /sink s} (47) tegral, becomes
. —JE'\y(cos f,sin¢,cosy, +cos ¢,siny, )sin [ Bys(sind,sing, +sinfsine) /2]
" arz,(sinf,sin, +sinfsing ) e e Pos(sind.sing, +sindsine)/2(§ o5 fsin g+ dcos ¢ )’
(56)
where The total scattering cross section ¢, and the backscattering

ks:Bs_jas:BO(l_jZ—l/‘[/)l/z‘ (48)

For the lossy transmission lines of interest, the resistance
per unit length is high enough to make

2 /4=12"Ao/$o¥>1 (49)
ko~Boyz' /24 (1-j). (50)

In addition, the attenuation of a wave propagating along
the length of the line s is large

le =7k =e i<,

(51)

This last inequality follows from (22), since

a s~ap s\, /277, (52)

where Z  is the characteristic impedance of the transmis-
sion line when the conductors have zero internal imped-
ance per unit length. The argument of the square root in
(52) is usually of the order of unity; this can be seen by
substituting the value of ¢ for a short antenna and the
value of Z , for a two-wire transmission line

Wo/27Z~[In(s/a,)=1]/In(b/ay).  (53)
This ratio of logarithmic terms is usually less than five for
practical geometries. Thus when the inequality (22) applies
to a; s, the inequality (52) for a,s also holds. After using
(49) and (51), the current (47) is approximately

Icm(y)=~(E' /2" )(cos 6,sin ¢,c0s ¥, + cos ¢,sin ), )

. {ejﬂo_v sind,sing, _ 5~ sk;y 4 o = 7ki(s = ¥ Bos siné, Sm¢>,}
~( E'/z")(cos §,sin ¢, cos y,+cos ¢, sin ¥, )

,ejﬁoysin& sin¢,. (54)
The last line in (54) is obtained by recognizing that terms
with —k_ in the exponent can be neglected, because they
are only significant at points very close to the ends of the
transmission line (y=0,s) when (51) is satisfied. Note,
that to this degree of approximation, the current is inde-
pendent of the parameter .

The scattered electric field E* in the far zone of the

cross section og, for the transmission line are obtained by
using (56) in (37) and (39). After performing the surface
integration in (37) and rearranging terms, the normalized
total scattering cross section becomes

0, (0,9, %,) /N
~(2/7|z'|*)|cos 8, sin ,cos ¢,
+cos ¢,sin g, |
. [(l/ﬁos) sin Byscos ( Byssinb,sin¢g, ) —2
+sinf,sin ¢, sin S5
-sin (Byssind,sing, )
+cos Byscos ( Byssinf,sing, )
+sinf,sin¢, {Cin [ B,s(1+sinf,sin¢,) ]
—Cin [ B,s(1—sinb,sin¢,)]}
+(Bys,/2)(1—sin?8,sin’ ¢, )
-{si[ Bys(sind,sing, +1)]
—si[ Bos(sinf,sing, —1)]} ] (57)

where si(x) and Cin(x) are the sine and cosine integrals
[19]

si(x)=Si(x)—m/2
:_fow/ze—”“’cos(xsint)dt (58)
Cin(x)=—Ci(x)+In(x)+y
:—/X(cosz~l)/tdt (59)
0

and vy is Euler’s constant. The normalized backscattering
cross section is simply

0nr /N~ (Bos/I12'1) /=] Bos/ (12" o /S0) | /. (60)

The normalized total scattering cross section
(0, /N3)/(Bys/|Z']*) computed from (57) is shown in Fig.
9 as a function of the electrical length S,s of the transmis-
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Fig. 9. Normalized total scattering cross section for transmission line as
a function of the electrical length Bys, ¢, =7 /2, ¢, =0.

sion line. The incident wave for this example is in the plane
¢, =m /2 with the electric field in the direction §, (y, =0);
the angle 4, is the parameter on the graph. This orientation
and polarization for the incident wave provides a complete
description of the scattering, since the scattering by the line
is rotationally symmetric about the y axis as a result of
approximating the two conductors of the line by one of
equivalent radius, and only the component of the incident
electric field that is parallel to the y axis is scattered by the
line. Two sets of cross sections computed from the
numerical solution of the integral equation (42) are also
shown in Fig. 9. These are for an angle of incidence #, =0°
and two values of the normalized resistance per unit length,
|7*| /¢=10, 100, where ¢ is taken to be Yy=2In(s/a,)—2.
As expected, the total scattering cross sections obtained
using the approximate formula (57) are in good agreement
with those from the numerical analysis when the parameter
|| /4 is large.

The maximum cross section for any of the lengths Bs
shown in Fig. 9 occurs when the angle of incidence is §, =0

0,(0,7/2;0) /Ny=(2/7|2'[*) [(1/Bys) sin Bos —2
+cos Bys+ BysSi(Bys)]. (61)

For electrically short lines B,s<]1, the total cross section is
approximately

0,(0,7/2;0) /Ny~2(Bys)’ / (372?) (62)

and for electrically long lines S,s>> 1, the total cross section
approaches

0,0, 7/2;0) /No~Bys/ |2 (63)

see Fig. 9. The asymptotic value given in (63) is useful as
an upper bound for the total scattering cross section of the
lossy transmission line for all angles of incidence and
polarizations of the incident wave.

The approximate formulas for the cross sections (57),
(60), (62), and (63) can be used to study the effect of
various parameters, such as the resistance per unit length 7’
and the frequency, on the scattering by the lossy transmis-
sion line. A relative measure of the scattering is obtained
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Fig. 10. The operation of the transmission line as a low-pass filter, the
voltage ratio |V(s)|/|V(0)] as a function of frequency for resistive
transmission lines terminated in an open circuit, Z, = co.

by comparing these cross sections with those for the dipole
antenna in the probe, (40) and (41). For example, a com-
parison can be made of the total scattering from the dipole
and from a length of the transmission line equal to the
length of the dipole, i.e., the ratio (o; /s)/(0,/2h). If the
maximum values of the total cross section for the line (61)
and for the dipole (40), with 8, =7 /2, {, =0, are used, this
ratio becomes ‘

0,(0,7/2;0) /s 54(h/s)
0,(7/2;0)/2h |52 Byh)°

+¢05 Bos+Bys Si( Bys )| [In (h/a,) — IV]Z.
(64)

For an internal impedance per unit length that is ap-
proximately a frequency-independent resistance z' ~r’, the
right side of (64) is inversely proportional to the square of
the frequency when the line is electrically short (B;s<1),
and inversely proportional to the cube of the frequency
when the line is electrically long (S8,5>>1).

[(1/Bys) sin Bys—2

V. THE TRANSMISSION LINE AS A Low-Pass FILTER

The highly resistive transmission lines used in miniature
field probes are very dispersive, i.e., the phase velocity for a
wave .propagating on the line is a strong function of the
frequency. This is illustrated in Fig. 10 where the voltage
transmission ratio

[V(s)/V(0)|=]|sec(k.s)| (65)

for the transmission line terminated in an open circuit,
Z,= o0, is graphed as a function of the frequency. Results
are shown for 20-cm-long lines formed from carbon-Teflon
conductors (7' =65.6 k{/m) and thin-film conductors (r'
=10 MQ /m); the capacitance per unit length of both lines
is ¢=20 pF/m. The transmission ratio is seen to drop
sharply once the frequency exceeds the point where |k, 5| =
1. For the carbon—Teflon conductors, this occurs at about
f=1.5 MHz and for the thin-film conductors at about
f=10 kHz.

Consider a probe, like that shown in Fig. 1, which is to
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measure amplitude-modulated incident electric fields of the
form

E'(r,t)=E'(r)f(t)cos[wyt+(r)]. (66)

The modulating signal f(¢) in (66) in band limited, i.e., its
Fourier transform F(w) is zero above the frequency w,

F(w)=0, (67)

The dipole antenna of the probe receives the incident
signal (66) and impresses a voltage proportional to it across
the diode. The nonlinear characteristic of the diode pro-
duces a current i,(¢) proportional to the square of the
amplitude modulation on the incident signal

iq(1)=Clf (1) (68)

The Fourier transform of this current /,(w) is also band
limited

|w]>w,,,.

1,(«)=0, (69)

For the transmission line to pass this current to the moni-
toring instrumentation without distortion, the frequency
2w,, must be below the frequency where |k (w)s|=1. As
discussed earlier, the inequality |k,(w,)s|>1 must be
satisfied at the high radio or microwave carrier frequency
w, to minimize the perturbation in the reception produced
by the transmission line. Thus with reference to Fig. 10, for
proper operation of the probe, the carrier frequency w, of
the incident signal must be well above the point where
k ;5] =1.0, while the frequencies contained in the square of
the modulating signal (w<2w,,) must be below this point.

When the parameters for the transmission line and the
modulation are selected so that the inequality

lw|>2w,,.

lkp(w)s~wc2ris? <1 (70)

is satisfied at the frequencies w<2w,,, the resistive trans-
mission line can be represented by the equivalent “Pi”
network shown in Fig. 11. The other elements in this
circuit diagram are the low-frequency Norton equivalent
circuit for the output of the diode and the input impedance
of the monitoring instrumentation Z_. In the diode, equiva-
lent circuit /,(w) is the short-circuit output current and Z,,
the diode “video impedance,” often take to be a resistance,
viz., R, the video resistance.’ An expression for the voltage
V(s) at the input to the monitoring instrumentation is
obtained from the equivalent circuit in Fig. 11. When the

. 3The details of the equivalent circuit for the diode and its use in the
equivalent circuit for the field probe are given in {10, ch. 3].
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inequality (70) is used to simplify this expression, the
voltage is approximately

V(s)=~1,Z,Z,/(Z,+Z,+2r's+jwesZ,2Z,)
=—1,2,2,/{2rs(1+2,/2r's)

+2,[1-j(k5) (2, /27s) ] ). (71)

For a practical probe, the resistance of the transmission
line 2r's is usually much greater than the diode impedance

|Z,/2r's|<1. (72)
After using the inequalities (70) and (72), (71) becomes
V(s)~—1,2,Z,/[2r's+Z,]. (73)

To summarize the results of this section, the resistive
transmission line in the field probe behaves as a low-pass
filter. If the probe is to be used to measure an amplitude-
modulated field without distortion, the frequencies in the
square of the modulating signal must lie within the pass-
band of the transmission line, i.e., (70) must be satisfied for
all frequencies w<2w,,. The voltage across the input im-
pedance Z  of the monitoring instrumentation is then
simply determined from (71) or (73).

VI. COMPARISON WITH EXPERIMENT

The previously obtained theoretical results show that the
transmission line with finite resistance will distort the field
pattern of the electric field probe from that of an ideal
electrically short dipole. To verify these results, a model
probe was constructed with the dimensions £#=1.25 cm,
b=5.0 mm, a,=0.19 mm, a; =0.38 mm, and s=15.0 cm.
The conductors of the resistive transmission line were the
NBS designed carbon-Teflon filament, ' =65.6 kQ /m. At
the frequency used for the measurements, f=800 MHz, the
inequality (22) was satisfied, e ~**=1.8X 1073, making
the reception by the probe independent of the length of the
transmission line and the load impedance Z,.

The probe was placed in an approximately plane electro-
magnetic wave with electric field Ej in the plane formed by
the dipole and transmission line (¢, =7 /2,37 /2), see Fig.
12(a). A field pattern was obtained by monitoring the
signal at the end of the transmission line as the probe was
rotated about the x axis to vary the angle §,. Data were
taken on both sides of the plane of symmetry for the probe
(6,=7/2) and averaged to produce a single pattern. The
system was calibrated to be certain that the diode was
operating in the square-law region over the range of mea-
surement. The measured and theoretical field patterns are
compared in Fig. 13(a), and they are seen to be in good
agreement. Note that the position of the null in the pattern
is shifted from 6, =0°, the point where it would occur for
an ideal electrically short dipole with the pattern [sin,|.
This shift is about 5° which agrees well with the predic-
tions of the theory (34).

In this example, the distortion of the field pattern by the
resistive transmission line was minor. To test the theory
further, a highly conducting transmission line was used



' INSTRUMENTATION

RESISTIVE
TRANSMISSION
LINE

HIGHLY—CONDUCTING
TRANSMISSION
LINE

12. Detail of experimental probe. (a) With resistive transmission
line. (b) With highly conducting and resistive transmission lines.

Fig.

LOW IMPEDANCE
“TERMINATION, Z,

g 8
w w / .
2 2 Y / HIGH IMPEDANCE
K PR \ / TERMINATION, Z,
3 —f a3 -°r [
> > Y l’
1 M.
o i S L Nl
w — THEORY w Lsin 61 v
S * MEASURED 5 i
ot k20 -
P - i 1
o o i I,
2 % '
L "
y
. "
—30 L PR —~30 s i " "
20° 0° 90° T 0° 90°

Fig. 13. Comparison of measured and theoretical field patterns in plane
¢, =m/2,3m/2 with incident field Ej. (a) Resistive transmission line.
(b) Highly conducting transmission line.

with the probe. The conductors of the line were copper

with the dimensions @, =0.32 mm and s=7.0 ¢m. At the
~ high frequency used in this experiment, it is difficult to
terminate the highly conducting parallel-wire transmission
line in' a known impedance and to precisely measure the
voltage across that impedance without interfering with the
reception of the incident signal by the dipole. To overcome
this difficulty, the highly conducting transmission line was
placed in parallel with the resistive transmission line al-
ready described, see Fig. 12(b). Since the resistive line was
shown to have a minor effect on the field pattern of the
probe, the pattern measured in: this manner is approxi-
mately that of the dlpole with the hxgh]y conducting trans-
mission line.

Field patterns were measured with the highly conducting
transmission line terminated in two different impedances
Z,: an open circuit and a low impedance formed by a
lumped capacitor, |Z, /Z, |~0.17. These patterns are com-

pared with the theoretical results in Fig. 13(b), and they are

seen to be in good agreement. Note that the theoretical
results for the highly conducting transmission line were
computed from the general expression (19), which is a
function of the length of the lirie s and load impedance Z_.

A comparison of Fig. 13(a) and (b) shows the great
improvement in the field pattern of the probe obtained by
replacing a highly conducting transmission line with a
highly resistive one.

‘ment; the exponential in (22) being e "*<e™
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The electric field probe with the configuration shown in
Fig. 1 has been analyzed to determine the effects of the
lossy transmission line on its performance. The following
conclusions can be drawn from the analysis. »

1) The reception of the incident field by the transmission
line distorts the field pattern of the probe from that of an
ideal electrically short dipole antenna. For a highly resis-
tive transmission line, the distortion of the pattern is
proportional to the parameter x (31); this includes the
distortion that is the reception of a signal polarized so that
it will not be recéived directly by the dipole. In the design -
of a field probe, this parameter is useful for comparing the
distortion produced by different line geometries.

ii) The scattering of the incident field by the transmis-
sion line was shown to be greatly reduced by making the
conductors highly resistive; hence the reason for referring
to such lines as “transparent.” The simple expressions
developed for the total scattering cross section and the
backscattering cross section of the highly resistive line
(57)-(63) can be used to obtain a relative measure of the
scattering from different line geometries and for comparing
the scattering from the line with that from the dipole.

iii) The highly resistive transmission line behaves as a
low-pass filter. If the probe is used to measure amplitude-
modulated signals, the significant frequencies in the square
of the modulating signal must be within the passband of
this filter. For practical probes this will be true when the

SUMMARY AND CONCLUSIONS

- highest frequency f,, in the band-limited modulating signal

satisfies the inequality f,, <(8mcr’s?) ! :

To illustrate the use of these results, consider the minia-
ture field probe in Fig. 14 recently developed by the U.S.
Bureau of Radiological Health (BRH) for the measurement
of amplitude-modulated fields with carrier frequencies in
the range 0.2-12 GHz and modulating signals with
frequency content in thé range 0<f<2 kHz [6]. The
parameters for this probe were selected empirically. The
dipole antenna is formed from a flat strip of half length
h=1.25 mm and width w=50 pm; this strip is equivalent
to-a round conductor with a radius a ,~w/4=13 pm [16].
The conductors of the high-resistance transmission line are
of length s=6.5 cm and spacing b=50 pm. The resistance
per unit length of the thin-film conductors is r’~9.7
MQ / m, and the capacitance per unit length of the trans--
mission line is ¢~57 pF/m. The transmission line is ex-
tremely lossy at the frequencies in the range of measure-
. The
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parameter x (31) is very small, x=7.1X10"% thus the
distortion of the field pattern due to the transmission line
is negligible. The theoretical shift in the nulls of the dipole
pattern (34) is only A§~0.04°.

The normalized total scattering cross section for the
transmission line 0,(0, 7/2;0) /A% is determined approxi-
mately by the small argument formula (62) at the lowest
frequency 0.2 GHz (B,s=0.27) and by the asymptotic
value (63) at the highest frequency 12 GHz (8,5=16.3).
The ratio of the total scattering cross section per unit
length of the transmission line to that for the dipole
antenna [o(0, 7 /2;0)/s]/[o,(7/2;0)/2k] decreases from
-10% at 0.2 GHz to 0.9 at 12 GHz.

The quantity |k;(w)s]> (71) is equal to one at the
frequency f=34 kHz; thus a field can be measured with
little distortion when the maximum frequency in the ampli-
tude modulation is f,, <17 kHz. This requirement is well
satisfied when the probe is used within specifications,
f.=2 kHz
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