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Analysis of Miniature Electric Field Probes
with Resistive Transmission Lines

,,
GLENN S. SMITH, SEN1OR MEMBER, IEEE

A fMract-The miniature dirmle rrrobe is a useful tool for measuring the. .
electric field at high radio and microwave frequencies. A common design

for the probe consists of an electrically short dipole antenna with a diode

across its terminaf% a resistive, parallel-wire transmission line transmits the

detected signal from the diode to tbe monitoring instrumentation. The high

resistance per unit length of the transmission line reduces the direct

reception of the incident field by the line and also reduces the scattering of

the incident field by the line. In addition, the resistive transmission line

serves as a low-pass filter in the detection process. In this paper, the effect

of the resistive transmission line on the operation of the miniature field
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probe is analyzed. Specifically, the reception of the incident signal by the

transmission line is compared with that of the dipole. The scattering of the

incident signal by the transmission line is stndled by means of the scatter-

ing cross section, and the limitation imposed on the measurement of

amplitude-modulated signals by the low-pass filtering by the resistive line is

examined. The results of the theoretical analyses are presented as simple

formulas which are useful in the design and optimization of the probe. The

theoretical results are shown to be in good agreement with measurements.

I. INTRODUCTION

I N MANY practical applications of electromagnetism at
high radio and microwave frequencies, an accurate mea-

surement of the electric field in free space or in a material

medium is required. Examples are the calibration of elec-

tromagnetic shielded rooms and anechoic chambers, the

measurement of the near field of transmitting antennas,

0018 -9480/’81/1 100-1213$00.75 @1981 IEEE
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Fig. 1. Dipole receiving probe.

and the sensing of fields in and around transmission lines

and waveguides. In addition, the recent interest in the

biological effects of nonionizing electromagnetic radiation

has created a need to measure the electric field in free

space for hazard assessment of emissions from devices,

such as microwave ovens, and in biological tissue or simu-

lated tissue to provide dosimetry for controlled bioelectro-

magnetic experiments.

The electrically short receiving dipole antenna is ideally

suited to this measurement, because the voltage produced

at its terminals is proportional to the component of the

incident electric field Ei that is parallel to its axis. With

reference to Fig. 1, the terminal voltage P’ is

where K, is the constant of proportionality. For a practical

probe, a connection that does not perturb the measurement

of the electric field must be made between the dipole and

the instrumentation that monitors the voltage V. A number

of dipole probes have been constructed using the basic

connection shown schematically in Fig. 1. The operation of

this probe is fairly simple. For an amplitude-modulated

incident field, the dipole produces an amplitude-modulated

oscillating voltage across the diode at its terminals. When

the diode is operating in its square-law region, a current

proportional to the square of the modulating signal is also

developed at the diode. For example, a continuous wave

field produces a direct current at the diode. This current is

passed through the low-pass filter formed by the lossy

transmission line to the monitoring instrumentation. Thus

a signal proportional to the square of the amplitude modu-

lation on the incident field is measured. The high resistance

per unit length of the Iossy transmission line reduces the

signal received directly by the line and transmitted to the

diode; it also reduces the scattering of the incident field by

the transmission line. In some probe designs, an additional

discrete-element low-pass filter is placed between the diode

and the transmission line as the insert in Fig. I shows.

The transmission lines for early versions of this probe

were constructed from very thin metallic wire with a typi-

cal resistance per unit length being O.1– 1 kS?/m [1], [2].

Later versions used a “semiconducting” line developed by

the U.S. National Bureau of Standards (NBS) [3]. This line

is formed from polytetraflouroethylene (Teflon) impreg-

nated with finely divided carbon black; the resistance per

unit length for a 0,76-mm-diameter filament is about 65.6

kfil/m. 1 Typical lengths for the dipoles of these probes

were 2 h = 1.0–5.0 cm. The miniature field probes recently

developed for biological applications have dipoles which

are much smaller in length, 2h = 1.5–8.0 mm [4]–[7]. Both

electrical and biological considerations require the dipoles

to be at least this small. The conductors of the transmission

lines for these miniature probes are formed by depositing a

thin film of a metallic alloy on a dielectric substrate; a

typical resistance per unit length being 1– 10 Mfl/m. Cur-

rent interest is in utilizing the technology of microwave

integrated circuits to produce even smaller dipole probes

(2h=0.5 mm) for use in in vivo bioelectromagnetic dosime-

try. When these probes are fully developed, they will have

many applications in addition to those in the area of

bioelectromagnetics. The design and the fabrication of the

lossy transmission lines for these very small probes are

critical, particularly if the performance of the combination

of the dipole, diode, and transmission line is to be opti-

mized. The empirical procedures used in the past may not

be sufficient for this purpose.

It is the purpose of this paper to present theoretical

electromagnetic analyses, supported by experimentation,

for the combination of the electrically short dipole and the

lossy transmission line. Specifically, i) the direct reception

of the incident signal by the transmission line is evaluated

and compared with that for the dipole, ii) the scattering of

the incident signal by the transmission line is studied by

formulating the scattering cross section for the line, and iii)

the behavior of the lossy line as a low-pass filter is ex-

amined. The results of the analyses are presented as simple

formulas that can be used for probe design and optimiza-

tion.

Only the single dipole with a lossy transmission line in

free space is examined. Methods for combining three di-

poles to obtain an isotropic response and the special tech-

niques, such as insulating the dipole, that are used to

improve the response of the probe when immersed in a

material medium are discussed in the literature [4]–[ 11].

II. FORMULATION OF THE PROBLEM

Fig. 2 shows the model used in the analysis for the

electric field probe. The dipole and the transmission line

are orthogonal; the axis of the dipole is parallel to the z

axis and the axis of the transmission line is parallel to they

axis. The dipole has half length h and conductor radius a~,

while the transmission line has length s, conductor radius

u~, and conductor spacing b. Lumped impedances ZO and

Z, (admittances YOand Y,) are connected at the ends of the

‘ This material is now commercially produced under the trade name
Conductive Fluorosint by the Polymer Corporation, Reading, PA 19603.
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Fig. 3. Schematic diagram showing reception of incident signal,

transmission line, y= O and y =s, respectively. In an actual

probe, these elements would represent the linear high-

frequency impedance of the diode and the input impedance

of the monitoring instrumentation. Note that the discrete

element low-pass filter in Fig. 1 is not included in the

model, but it can be added easily if needed. The incident

signal is a linearly polarized electromagnetic plane wave

propagating in the direction specified by the angles 01,01

with the electric field

where

k-r= –~O(xsinO,cos@l +ysinO, sin@l +zcos13, ). (3)

A complex harmonic time dependence eJ”t is assumed, and

B.= am is the propagation constant for free space.
The incident wave produces currents in the dipole and in

the transmission line. The current in the transmission line

can be split into two components: the differential-mode

current ZDM, which is equal in amplitude in the two con-

ductors, but opposite in direction, and the common-mode

current lCM, which has equal amplitude and the same

direction in both conductors, see Fig. 3. The differential-

mode current IDM goes through the terminal impedances

20 and Z, and is responsible for the direct reception of the

incident signal by the transmission line; the common-mode

current is zero in the terminations. The common-mode

current, however, is the source of the scattered electromag-

netic field for the transmission line. The scattered field can

produce currents in nearby objects, and these, in turn, can

/“
lASC lLSC

Fig. 4. Norton equivalent circuit for dipole-transmission-line reception.

produce a secondary field received by the dipole or trans-

mission line, see Fig. 3. Thus the currents lDM and lCM are

the sources of two errors produced in the measurement,

viz., the direct reception of the incident signal by the

transmission line, and the scattering of the incident signal

by the transmission line that can result in the reception of

an erroneous signal by the probe.

In the study of the combination of the dipole and

transmission line, the reception by the transmission line,

i.e., the differential-mode current lDM (y= O) in the imped-

ance 2., is calculated and compared to the reception by

the dipole antenna, i.e., the antenna current 1A (z= O) in

the impedance 20. The degradation of the receiving pattern

for the dipole by the transmission line is then examined.

The effect of the scattering of the incident wave by the

transmission line on the reception by the dipole cannot be

completely assessed unless a description of all objects near

the probe is provided. A measure of the effect, however,

can be obtained by considering the general scattering prop-

erties of the transmission line and comparing these with the

scattering properties of the dipole. This is done by for-

mulating the total scattering cross section and the back-

scattering cross section for broadside incidence of the

dipole and the transmission line separately.

In the analysis, the electromagnetic coupling between the

dipole and the orthogonal transmission line is ignored, and

the only interaction considered between these elements is

at their connection.

III. RECEPTION OF THE INCIDENT WAVE

The reception of the incident signal by the combination

of the dipole and the transmission line is analyzed using

the Norton equivalent circuit shown in Fig. 4. In this

circuit, the current generators l~~c and lL~c are the cur-

rents that would be produced by the incident field in a

short circuit at the terminals of the dipole and at the left

terminals of the transmission line, respectively, and the

admittances Y~ and YL are those for the driven dipole and

the driven transmission line (the input admittance of the’

line terminated with the impedance Z~). For an electrically

short dipole ( /30h <<1) the circuit elements are

I ASC w – hE’ cos $, sin 0,Y~ (4)

Y. =j@Oh/rO[ln ( h/aA ) – I] (5)

where terms of order (~. h )2 or less have been ignored, and

{0= /= is the impedance of free space [10]. The input
admittance for the transmission line is simply

[

~+jYCtan(kLs)

‘L=K” j~tan(kLs)+YC
1

(6)
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Fig. 5. Equivalent voltage and current sources for a length A y of the
transmission line.

where the complex wavenumber k= and the characteristic

admittance YC(impedance ZC) are expressed in terms of the

series impedance per unit length ZL and the shunt admitt-

ance pe~ unit length yL

kL =flL –jaL = {G

Yc=l/zc=/z.

The series impedance per unit length is

(7)

(8)

the sum of the

internal impedance per unit length of the conductors 2z’

and the impedance of the external inductance per unit

length 1’

ZL =2zi +jtile =2r’ +jti(21’ +1’) (9)

and the shunt admittance per unit length is the sum of the

conductance per unit length g, and the admittance of the

capacitance, c, per unit length

yL=g+jtic. (lo)

Note that the internal impedance per unit length of each

conductor is z 1, requiring the factor of two in the loop

impedance per unit length (9). It remains to determine the

equivalent current generator for the transmission line lL~c

by analyzing the excitation of the line by the incident field.

The effect of the incident electromagnetic field on the

transmission line is equivalent to a distributed series volt-

age source and a distributed shunt current source [ 12], [13],

see Fig. 5. For a general incident field E’(x, y, z),

B’(x, y, z), the equivalent voltage and current sources per

unit length of {he Iine are

T(y) =jti~’,,B~(O, y, z) dz (11)

and

~.(y) =–yLJ bj2 E:(O, y, z) dz. (12)
– b/2

These sources appear on the right-hand sides of the trans-

mission-line equations for the differential-mode voltage

and current

avDM(y)

ay
+zLIDM(y)=’y(y)

azDM( y)

ay
+yLvDM(y)=~Jy).

(13)

(14)

After combining (1 1)–(14) and using Maxwell’s equations,

the following partial differential equations of the second

order are obtained for the voltage and the current in the

transmission line:

a2v;;2(y)+k:VDM(y)=yL2zij~,2E; (CI,y,z) dz

b/2 a~j(o, Y! z)
+j~J_b,2 ax dz (15)

a21~j‘) +k;I~M(y) ‘YLIE;(O> Y, b/2)

–E;(O, y, –b/2)]. (16)

The solution of the differential system consisting of (15),

(16), and the boundary conditions V~M(0)= – ZOI~M(0),

v~M(s) = Z~I~M(S) is straightforward [121, [131.Specifi-

cally, the solution for the current at the left termination of

the line, y= O, is

IDM(0) = ([j~,sin kLs+cos kL.s]

-Jp;(o, Y, ~/2)--q(o, y, -w)]

. [j~~sinkL(y–s) –coskL(y–-s)] dy}/Z,~

(17)

where

D=j(l+~O~, )sinkLs+ (~0+~, )coskLs (18)

and the normalized impedance ~ (admittance ~) is ~=

z/zc (7= Y/ YC). When the incident field(2) is substituted

into (17), the inequality &b<< 1 used, and the integrals

evaluated, the current becomes

IDM(0) = (E’b/ZC) {COS 61[(COS kLs

+jsin kLs(.Z,sinOisin@J +EL)]

+cos+,sin~i]/(E;–sin201 sin20, )

—sin f?,[j~’sin kLs+cos kLs —e jbossinti,sin+, 1

1.cos +, /D (19)

where EL = kL /130. The current generator lLSC, which w-

pears in the Norton equivalent circuit of Fig. 4, is de-

termined by setting 20 equal to zero in (19)

I LSC=lDM(0)[Za=O. (20)

With the values of elements in the equivalent circuit of

Fig. 4 given by (4)–(6) and (20), the oscillating voltage V
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across the terminals of the load impedance 20 (admittance

YO) is determined

~= –(Lsc+~Lsc)/(yA +YL+YO). (21)

From this equation it is seen that the relative reception of

the incident field by the dipole and the transmission line

can be evaluated by comparing the two components of the

total short-circuit current lT~c =l~~c + lL~c. For the spe-

cial case of interest, the high loss per unit length of the

transmission line introduces the inequality

le-j~.~l=e-ao K 1 (22)

which simplifies greatly the expressions for the current lL~c

and the admittance YL

lL~c=(E’b/ZC) [cosdi(cosd,sin$ icos~,

+ cos $, sin ~,)/(EL – sindisin+i)

—sin i3,cos $,1 (23)

YL-YC. (24)

After combining (4) and (23), the total short-circuit current

becomes

I
–jAxoh2Ei

~Sc=ln(h/a~)–l { sin 8,cos $,

–x[cos Oi(cos Oisin @,cos ~i

+ cos @lsin *,)/( 1– sin 8,sin@,/~L)

–ELsindlcos ~,]) (25)

where the parameter x is

ln(h/a~)–l
x= (b/h) ({O/zLh).

7r
(26)

Note that after the use of (22), the current ~~~c is indepen-

dent of the length s of the transmission line and the load

impedance Z..

Additional simplification of (25) is possible if assump-

tions are $made concerning the impedance ZL and the

admittance yL per unit length of the transmission line. For

a line with negligible conductance per unit length g= O and

a high resistance per unit length 2r’ ~ Q(21’ + 1’)

zL=2ri yL *jtoc (27’)

which makes

lL”=/~O=fi(l-j) (28a)

thus

IILI>l. (28b)

With these results, (25) becomes

I
–jmixoh2E’

~sc=ln(h/a~)–l
{F’(O@J,

‘ILF~(Oi)COS$i]} (29)

@= &:*
x 7

an

lFal

slr12
U12

Fig. 6. Polar field patterns in principal planes for functions F’(O,, +,),

FL,(6’,, 0,), and FLZ(O,, 4+).

where

F~((3, )=sin0, (30a)

‘Ll(e~ ) +,)‘COS2@iSiIl@l (30b)

FLz(6i, @i) ‘COS 8iCOS @i (30C)

and

The first term in the braces in (29) results from the

reception of the incident field by the electrically short

dipole antenna, the remainder, i.e., the terms with the

coefficient X, is due to the reception by the transmission

line. A careful examination of these terms will indicate the

effect of the transmission line on the response of the

electric field probe. The response of the ~ipole antenna,

specified by the function FA( di), is to the 6, component of

the incident electric field, and it has the familiar figure-eight

shaped polar field pattern shown in Fig. 6. The response of

the transmission line has three terms, the last of these has

the same form as the response for the dipole, FA(di), and

simply contributes to the desired response for the probe.

The other two terms are responses to the ~. and $, compo-

nents of the incident field and are proportional to the

functions FL1(13i,@i) and FL2(Oi, @j), respectively. The

former causes the pattern for the probe to deviate from

that for the dipole, particularly in the vicinity of the nulls,

and the latter causes the probe to respond to an eleetric

field orthogonal to the dipole. Polar patterns for the func-

tions FL1( @i>0, ) and ~L’2( Oi, @i) in the principal planes are
shown in Fig. 6.

For purposes of discussion, it is convenient to combine

the terms proportional LO F~(d,, @i) in (29) and introduce
the normalized current l~Sc

fTsc=IT~c/{–jticoh2(l +ELx)E~[ln(h/aA)-1])
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Fig. 7. Rectangular field patterns in principal planes for
parameter x=O.3. (a) O, =n/2,3T/2. (b) I#J,=0, ~

where

probe with

~=x/(l+Fzx)

=x/{1+(~/~)(~Lro/2 ~’~)[ln(~/~A) –1]/~}.

(33)

The deviation of the normalized response of the probe (32)

from that of the ideal dipole, the error in the response, is

simply proportional to the complex parameter ~ (33). The

magnitude of this parameter is always less than the real

parameter x (31), 1~1<x, and for many practical designs

\~Lxl <1, so that x=x. Therefore, the real parameter x is a

useful measure of the error in the response of the probe.

Note that the product of the dimensionless ratios (b/h)

and ({. /rih ) appears in the expression for X. Thus if the

length h of the dipole in a probe is to be reduced by a

factor $ without increasing the error (x) in the response,

the spacing between the conductors of the transmission

line must be decreased by the factor .$ and their resistance

per unit length must be increased by the factor 1/$.

Alternatively, only the spacing or the resistance need be

changed, but then by the factors $2 and (1/.$)2, respec-

tively. Note that x is not a function of the frequency when

the resistance per unit length r’ is frequency independent.

To illustrate the error introduced in the response of the
probe by the transmission line, rectangular field patterns

are shown in Fig. 7 for a probe with the parameter x=0.3

(l~Lxl <<1). The reception by the transmission line is seen

to cause the pattern of the probe in the plane @i= 7/2,

3n-/2 for an incident field Ej, Fig. 7(a), to deviate from

that of the ideal dipole Isin 0,1. The width of the lobe in the

half plane +,= z-/2 is decreased, while the width of the

lobe in the half plane O,= 3Tr/2 is increased. The nulls in

the pattern are shifted by approximately the amount

A(3= sin– ] [(R-@x]-x, x~l (34)

which for this example is about 16.10. In the plane $, = O, m,

the pattern of the probe for an incident field E;, Fig. 7(b),

is the same as that of an ideal dipole; however, there is a

response to an incident field E; that does not exist for the

ideal dipole.

IV. SCATTERING OF THE INCIDENT WAVE

The currents produced in the dipole antenna and the

transmission line by the incident field are the sources of

the secondary or scattered field. With reference to Fig. 3,

the current 1A is the source of the scattered field for the

dipole antenna. At distances from the transmission line

that are large compared to the spacing of the conductors b,

the field of the common-mode current lc~ is much greater

than that of the differential-mode current lD~. Thus the

common-mode current lc~ is the major source of the

scattered field for the transmission line. In the analysis of

the scattering from the probe, the scattering from the

dipole antenna and the transmission line will be evaluated

separately and compared. As in the analysis of the recep-

tion by the probe, Section III, the electromagnetic coupling

between the dipole and the orthogonal transmission line is

ignored.

The scattering cross sections are convenient quantities

for comparing the relative scattering from the dipole and

transmission line and for studying the effect of parameters,

such as the resistance per unit length of the transmission

line, on the scattering. The cross sections considered are

the total scattering cross section u, which is the ratio of the

total time-average power scattered Ps to the time-average

power density of the incident wave S’

fJ(@,, $t; *,)= Ps/sz (35)

and the backscattering cross section UB, which is the ratio

‘B( ‘t >4,; 1,)= ‘&Otmpic/s’ (36)

where P,&,Op,C is the total time-average power radiated by

an isotropic scatterer that maintains the same electromag-

netic field in all directions as maintained by the actual

scatterer in the direction (6,, ~, ) toward the source [14].

The total scattering cross section in terms of the incident

and scattered electric fields E’ and Es is

j/Es(Es)*r2dQ
rJ(8,, f#IZ;rJ,)= lim

r-m El. (EL)*

= lim
JJ(lE112+l%12)r2dQ

IE’12
(37)

r- cc

where dfl is the element of solid angle for a sphere of

radius r that completely encloses the scatterer. The back-

scattering cross sections considered are those for an inci-

dent wave broadside to the dipole or transmission line with

the electric field parallel to the conductors. For the dipole

antenna (d, =n/2, +, =0; *, =0) ‘

4mr21Ej(O=~/2, @=O)12
UBA=LTB(7r\2,0; O) = lim

r-ix IE’12

(38)
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and for the transmission line ( Oi= O,@i= T/2; ~i = O)

4m21E~(O=0, @=7r/2)12
o~L =u~(O, m/2; O)= lim

r-i lx [Ef[z “

(39)

When normalized to the square of the free-space wave-

length AO, the well-known cross sections for the electrically

short dipole with its terminals short circuited ( ZO = O) are

the total cross section [15]

‘,4(”i; *i)/A~

=2(~Oh)’sin26icos2 ~i/{27n[ln(h/a~ )–1]2] ,(40)

and the backscattering cross section’

o~~/A~= (/30k)’/[97r[ln (h/a~)-l]2]. (41)

Before the cross sections for the transmission line can be

evaluated, the common-mode current distribution Zc~(y)

and the field that it produces Es must be determined. The

common-mode current in each conductor is a solution to

the following approximate integral equation:

~[~c~(~’)e-jB”R/R,]d~’

‘jPOi’JY1c~(y’) sin~O(y–y’) dy’

–jAOEi(cos ~icos Oisin@l + sin r)icos @i)

(0( 1– sin’ o,sin’ O,)

.e’AYSinf3[Sin@1+AcOs~Oy+Bsin~oy

(42)

where A and B are constants to be determined by the end

conditions lc~(0) = lc~(s ) = O, and the normalized inter-

nal impedance per unit length is

,ii =zfAo/Jo. (43)

This is the familiar integral equation for the current on a

thin-wire scatterer with the equivalent radius

-rae — aLb (44)

appearing in the distance R,

Re=[(y–y’f+a~]l’2. (45)

The equivalent radius approximately accounts for the fact

that the transmission line is composed of two closely

spaced conductors (Do b<< 1) carrying equal currents rather

than a single conductor [ 16]. The integral equation (42) can

be solved for the current by any of a number of straightfor-

ward numerical methods and the scattered field and cross

sections determined [17]. Typical results are shown in Fig.

8 for the normalized total scattering cross section uL/& of

a one-wavelength-long transmission line (s = A o, ae = 3.33

X 10 ‘3AO) with the incident field from the direction Oi= O,

2These formulas differ from those of [15] in that the term in (4 h/aA ) is

replaced by ln( h/uA).

Fig. 8,

long
dent

.<O

‘3..
$

1

,.-2

,.-4

, 0–6

, 0–8
, 0–2 1 , ~z ,.4

7= ,’A,J{o

Normalized total scattering cross section of a one-wavelength-
transmission line (s/AO)= 1.0, ae/AO =3.33X 10–3) for an inci-
wave with 0, =0,+, =7r/2, and +, =0.

1#11= 7r/2 and with the polarization r/Ji= O (E; component

only). The cross section is shown as a function of the

normalized internal resistance per unit length of the con-

ductors ii= riAO /{., and it is seen to be reduced signifi-

cantly by an increase in the resistance once 7’ is greater

than about 10. The three regions marked on the graph

represent typical ranges of rrL/A~ at a frequency of 1 GHz

for metallic wires with a radius aL = 25 pm (1 roil), the’

NBS carbon–Teflon conductor, and thin-metallic-film con-

ductors. From this graph, it is clear why the high-resistance

transmission lines are often referred to as “transparent” to

electromagnetic fields at high radio and microwave fre-

quencies.

While numerical methods can provide an accurate solu-

tion to the integral equation (42) for specific values of the

parameters, an analytic solution to the equation is more

useful in performirig parametric studies. An analytic ex-

pression for the current lc~(y) can be obtained by ap-

proximating the integral equation for the special case of

interest, namely, conductors with a high internal imped-

ance per unit length. The first integral on the left of (42)

has a kernel with a sharp peak at the point y =-y’. This

behavior is often used in antenna theory to replace this

integral by the term ~lc~( y ) and obtain the so-called

“zeroth-order” solution to the equation [16]. The particular

choice of the constant + is not important for the purposes

of the following argument, but an estimate of its magni-

tude can be obtained from the value for an electrically

short antenna ~= 2 in (s/a,) —2. With this substitution, the

approximate integral equation becomes

~crvr(Y)-yJyzcM(Y’)si~Bo(Y-Y’)dY’
–jEiXO(cos ~icos Oisin@i + sin ~icos @i)

w
rO*(l –sin’ disin’ $,)

.e%y$ine,sirr~, +~’’cos~Oy +B’sin~Oy.

(46)

This is a Volterra integral equation of the second kind with
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a convolution-type kernel; its solution is easily obtained transmission line is

using the Laplace transformation [18] ~ ‘J$or

E’=–jtipO(Pcos f3sin@+~cos@)~

~CM(~)=

–j~’AO(cos 01sino,cos *Z + cos +, sin ~, )

JOY(l - sin’ dlsin’ @l–j,Z/*)
J

.2 ‘~cM(yf)ejPO.~’sin~sin+~y’ (55)
o

“ {e’p”ys’ne’s’n+’- [sink, (s-y) +sink,y which, on substitution of (54) and evaluation of the in-

.ejpO.sin@,S,n@]/sink,$} (47)
tegral, becomes

Es=
–jE’Ao(cos 8Zsin@,cos $1 +COS +lsin $, )sin [/30s(sinOlsin@Z + sin Osin@)/2]

nr~, (sin d,sin~, +sindsin@)e ‘JflOreJ~O’fsinosin@ ‘sin Osin’$’J12(#COS Osin@+$cos ~)”

where

k$=fl,-ja,=po(l –jZ’/+)’”. (48)

For the lossy transmission lines of interest, the resistance

per unit length is high enough to make

[7/+[ = lz’Ao/{o+l >>1 (49)

%= Pom(l-~). (50)

In addition, the attenuation of a wave propagating along

the length of the lines is large

(56)

The total scattering cross section u~ and the backscattering

cross section o~~ for the transmission line are obtained by

using (56) in (37) and (39). After performing the surface

integration in (37) and rearranging terms, the normalized

total scattering cross section becomes

[(l/BOs)sin~Oscos( BOssin6jsin@,)-2

le-’k’sl=e-d’’~l. (51) + sin O,sin +, sin ~Os

This last inequality follows from (22), since . sin ( DOSsin (3,sin $, )

ass= (XLS l&/27rzco (52) + cos~Oscos (~os sin O,sin~l )

where 2,0 is the characteristic impedance of the transmiss-

ion line when the conductors have zero internal imped-

ance per unit length. The argument of the square root in

(52) is usually of the order of unity; this can be seen by

substituting the value of ~ for a short antenna and the

value of ZCOfor a two-wire transmission line

Wo/2~zco=[ln(s/a,)– 1]/in (b/a~). (53)

This ratio of logarithmic terms is usually less than five for

practical geometries. Thus when the inequality (22) applies

to a~s, the inequality (52) for a,s also holds. After using

(49) and (51), the current (47) is approximately

+sinOZsin@, {Cin[/30s(l +sin13, sin@l)]

–Cin[&(l-s infllsin~l)]}

+ (flos/2)(1 – sin’ OIsin2 f#IZ)

c {si[~,s(sin(?lsin~, + 1)]

–si[&s(sinOZsinO, -l)]}] (57)

where si (x ) and Cin (x ) are the sine and cosine integrals

[19]

si(x)=Si(x)–r/2

~cM(Y)=(~l/z’)(cos ~isin@icos +L+cos@isin *l) —
--[ “’e- xcos~cos(xsin t) dt (58)

. (e,Po.v.inO,sin+, -e-jk,y+e-jk,(s -y)ejpossinQ,sn+,]
“u

Cin(x)= –Ci(x)+ln(x)+y
=( E’/.) (cosos O,sin@,cos*Z+cos @lsin 4,)

—
--J( x cost–1)/tdt

.eMOy Sine, SiII+f. (54) o

The last line in (54) is obtained by recognizing that terms
and y is Euler’s constant. The normalized

with – k, in the exponent can be neglected, because they
cross section is simply

are only significant at points very close to the ends of the

transmission line (y= O,s ) when (51) is satisfied. Note,
u~~/& =(& S/\~Z\)2/~= [~Os\(lz’ 1~0/fo)]2/~. (60)

(59)

backscattering

that to this degree of approximation, the current is inde- The normalized total scattering cross section

pendent of the parameter ~. (U~/&)/(l$S/12Z l’) computed from (57) is shown in Fig.
The scattered electric field E’ in the far zone of the 9 as a function of the electrical length /3.s of the transmis-



SMITH: MINIATURE ELECTRIC FIELD PROBES 1221

Fig. 9.
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Normalized totaf scattering cross section for transmission line as
a function of the electrical length /3.s, O, = 7r/2, +, =0.

sion line. The incident wave for this example is in the plane

+, =n-/2 with the electric field in the direction d, (~, =0);

the angle 6, is the parameter on the graph. This orientation

and polarization for the incident wave provides a complete

description of the scattering, since the scattering by the line

is rotationally symmetric about the y axis as a result of

approximating the two conductors of the line by one of

equivalent radius, and only the component of the incident

electric field that is parallel to they axis is scattered by the

line. Two sets of cross sections computed from the

numerical solution of the integral equation (42) are also

shown in Fig. 9. These are for an angle of incidence 0, = 0°

and two values of the normalized resistance per unit length,

l?’ I/t)= 10, 100, where r) is taken to be ~=21n(s/ae)–2.

As expected, the total scattering cross sections obtained

using the approximate formula (57) are in good agreement

with those from the numerical analysis when the parameter

IFi 1/~ is large.

The maximum cross section for any of the lengths ~Os

shown in Fig. 9 occurs when the angle of incidence is 19i= O

u~(O, 7r/2; 0)/A~= (2/7rlZ12) [(1/&s) sin ~os–2

+cos~Os+&sSi(BO~ )]. (61)

For electrically short lines &s<< 1, the total cross section is

approximately

u~(O, 7r\2; 0)/A~=2(~Os)2/( 3n15’12) (62)

and for electrically long lines /3..s>>1, the total cross section

approaches

UL(O, %’/2; o)/A;=&/lz’[2 (63)

see Fig. 9. The asymptotic value given in (63) is useful as

an upper bound for the total scattering cross section of the

lossy transmission line for all angles of incidence and

polarizations of the incident wave.

The approximate formulas for the cross sections (57),

(60), (62), and (63) can be used to study the effect of

various parameters, such as the resistance per unit length r’

and the frequency, on the scattering by the 10SSYtransmis-

sion line. A relative measure of the scattering is obtained

1,0

8
08

:.

~ 06

5
CARBON–TEFLON

; 0,4 CONDUCTORS

> THIN–FILM CONDUCTORS—

0,2
,, . ,~ pJQ/m

00

1 ,.2 ,.4 , @3 ,08

f,H.

Fig. 10. The operation of the transmission line as a low-pass filter, the
voltage ratio ]V(s) I/ IV(O)I as a function of frequency for resistive
transmission lines terminated in an open circuit, Z.= eo.

by comparing these cross sections with those for the dipole

antenna in the probe, (40) and (41). For example, a com-

parison can be made of the total scattering from the dipole

and from a length of the transmission line equal to the

length of the dipole, i.e., the ratio (UL /s)/(u~ /2h ). If the

maximum values of the total cross section for the line (61)

and for the dipole (40), with 8, = r/2, ~, = O, are used, this

ratio becomes

%(q 77/2;0)/s = 54(h/s)’

o~(~/2; O)/2h lii12(~Oh)
J(l/l%s)sin&F-2

+cos~Os+j30sSi( &s)] [ln(h/a~) – 1]2.

(64)

For an internal impedance per unit length that is ap-

proximately a frequency-independent resistance Zis ri, the

right side of (64) is inversely proportional to the square of

the frequency when the line is electrically short (&s< 1),

and inversely proportional to the cube of the frequency

when the line is electrically long ( &s~ 1),

V. THE TRANSMISSION LINE AS A LOW-PASS FILTER

The highly resistive transmission lines used in miniature

field probes are very dispersive, i.e., the phase velocity for a

wave propagating on the line is a strong function of the

frequency. This is illustrated in Fig. 10 where the voltage

transmission ratio

lV(.s)/V(0)l=lsec( kLs)l (65)

for the transmission line terminated in an open circuit,

Z,= co, is graphed as a function of the frequency. Results

are shown for 20-cm-long lines formed from carbon–Teflon

conductors (r’ =65.6 kQ/m) and thin-film conductors (r’

=10 M$2/m); the capacitance per unit length of both lines

is c= 20 pF/m. The transmission ratio is seen to drop
sharply once the frequency exceeds the point where lkLsl =

1. For the carbon–Teflon conductors, this occurs at about

~= 1.5 MHz and for the thin-film conductors at about

~= 10 kHz.

Consider a probe, like that shown in Fig. 1, which is to
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Fig. 11. Low-frequency output circuit for diode, transmission line, and
termination, Z,.

measure amplitude-modulated incident electric fields of the

form

E’(r, t)= E’(r) f(t)cos[qJ+q@.)]. (66)

The modulating signal ~(t) in (66) in band limited, i.e., its

Fourier transform F(u) is zero above the frequency Um

F(tiJ)=O, l(.Jl>um. (67)

The dipole antenna of the probe receives the incident

signal (66) and impresses a voltage proportional to it across

the diode. The nonlinear characteristic of the diode pro-

duces a current id(t) proportional to the square of the

amplitude modulation on the incident signal

2d(t)=c~(t)12. (68)

The Fourier transform of this current ld(ti ) is also band

limited

I~(ti)=O, ]cJl>2cJm. (69)

For the transmission line to pass this current to the moni-

toring instrumentation without distortion, the frequency

2ti~ must be below the frequency where lk~(o)sl = 1. As

discussed earlier, the inequality lk~( Uo).sl >>1 must be

satisfied at the high radio or microwave carrier frequency

~0 to minimize the perturbation in the reception produced

by the transmission line. Thus with reference to Fig. 10, for

proper operation of the probe, the carrier frequency UO of

the incident signal must be well above the point where

lk~.sl = 1.0, while the frequencies contained in the square of

the modulating signal (u< 2cJ~) must be below this point.

When the parameters for the transmission line and the

modulation are selected so that the inequality

\kL(a)s12 =uc2r’s2<l (70)

is satisfied at the frequencies Q<2 Qm, the resistive trans-

mission line can be represented by the equivalent “Pi”

network shown in Fig. 11. The other elements in this

circuit diagram are the low-frequency Norton equivalent

circuit for the output of the diode and the input impedance

of the monitoring instrumentation 2$. In the diode, equiva-

lent circuit Id(o) is the short-circuit output current and Zd

the diode “video impedance,” often take to be a resistance,

viz., R ~ the video resistance.3 An expression for the voltage

V(s) at the input to the monitoring instrumentation is

obtained from the equivalent circuit in Fig. 11. When the

3The details of the equivalent circuit for the diode and its use in the
equivalent circuit for the field probe are given in [10, ch. 3].

inequality (70) is used to simplify this expression, the

voltage is approximately

v(s)=– Idz,zd/(zd +2, +2r’s+jucszdz,)

.— –Idz,zd/{2r’s(l +zd/2rlr)

+Z,[l–j(k~s)2(Zd/2 r’s)]].

For a practical probe, the resistance of the

(71)

transmission

line 2r’s is usually much greater ‘than the diode impedance

\Zd/2r’.sl~l. (72)

After using the inequalities (70) and (72), (71) becomes

v(s)=– I~Z,Z~/[2r’s+ZJ. (73)

To summarize the results of this section, the resistive

transmission line in the field probe behaves as a low-pass
filter. If the probe is to be used to measure an amplitude-

modulated field without distortion, the frequencies in the

square of the modulating signal must lie within the pass-

band of the transmission line, i.e., (70) must be satisfied for

all frequencies u <2 ti~. The voltage across the input im-

pedance 2$ of the monitoring instrumentation is then

simply determined from (71 ) or (73).

VI. COMPARISON WITH EXPERIMENT

The previously obtained theoretical results show that the

transmission line with finite resistance will distort the field

pattern of the electric field probe from that of an ideal

electrically short dipole. To verify these results, a model

probe was constructed with the dimensions h= 1.25 cm,

b=5.f) mm, aA =0.19 mm, a~=().38 mm, and ~=15.(1 cm.

The conductors of the resistive transmission line were the

NBS designed carbon-Teflon filament, r’= 65.6 kK1/m. At

the frequency used for the measurements, ~= 800 MHz, the

inequality (22) was satisfied, e ‘“L’ = 1.8x 10-3, making

the reception by the probe independent of the length of the

transmission line and the load impedance Z,.

The probe was placed in an approximately plane electro-

magnetic wave with electric field E; in the plane formed by

the dipole and transmission line (4, = 7r/2, 3m/2), see Fig.

12(a). A field pattern was obtained by monitoring the

signal at the end of the transmission line as the probe was

rotated about the x axis to vary the angle 19Z.Data were

taken on both sides of the plane of symmetry for the probe

(6, = 7r/2) and averaged to produce a single pattern. The
system was calibrated to be certain that the diode was

operating in the square-law region over the range of mea-

surement. The measured and theoretical field patterns are

compared in Fig. 13(a), and they are seen to be in good

agreement. Note that the position of the null in the pattern

is shifted from 01= 0°, the point where it would occur for

an ideal electrically short dipole with the pattern lsin 8,1.

This shift is about 5° which agrees well with the predic-

tions of the theory (34).

In this example, the distortion of the field pattern by the
resistive transmission line was minor. To test the theory

further, a highly conducting transmission line was used
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with the probe. The conductors of the line were copper

with the dimensions a~=O.32 mm and s=7.O cm., At the

high frequency used in this experiment, it is difficult to

terminate the highly conducting parallel-wire transmission

line in a known impedance and to precisely measure the

voltage across that impedance without interfering with the

reception of the incident signal by the dipole. To overcome

this difficulty, the highly conducting transmission line was

placed in parallel with the resistive transmission line al-

ready described, see Fig. 12(b). Since the resistive line was

shown to have a minor effect on the field pattern of the

probe, the pattern measured in this manner is approxi-

mately that of the dipole with the highly conducting trans-

mission line.

Field patterns were measured with the highly conducting

transmission line terminated in two different impedances

2,: an open circuit and’ a low impedance formed by a

lumped capacitor, IZ, /ZC I -0.17. These patterns are com-

pared with the theoretical results in Fig. 13(b), and they are

seen to be in good agreement. Note that the theoretical

results for the highly conducting transmission line were

computed from the general expression (19), which is a

function of the length of the lines and load impedance Z..

A comparison of Fig. 13(a) and (b) shows the great

improvement in the field pattern of the probe obtained by

replacing a highly conducting transmission line with a

highly resistive one.

DIODE

2.5 mm

/’
DIPOLE

THIN FILM

CONDUCTORS

Fig. 14. Detail of the BRH probe.

VII. SUMMARY AND CONCLUSIONS

The electric field probe with the configuration shown in

Fig. 1 has been analyzed to determine the effects of the

lossy transmission line on its performance. The following

conclusions can be drawn from the analysis.

i) The reception of the incident field by the transmission

line distorts the field pattern of the probe from that of an

ideal electrically short dipole antenna. For a highly resis-

tive transmission line, the distortion of the pattern is

proportional to the parameter x (31); this includes the

distortion that is the reception of a signal polarized so that

it will not be received directly by the dipole. In the design

of a field probe, this parameter is useful for comparing the

distortion produced by different line geometries.

ii) The scattering of the incident field by the transmis-

sion line was shown to be greatly reduced by making the

conductors ~ghly resistive; hence the reason for referring

to such lines as “transparent.” The simple expressions

developed for the total scattering cross section and the

backscattering cross section of the highly resistive line
(57)-(63) can be used to obtain a relative measure of the

scattering from different line geometries and for comparing

the scattering from the line with that from the dipole.

iii) The highly resistive transmission line behaves as a

low-pass filter. If the probe is used to measure amplitude-

modulated signals, the significant frequencies in the square

of the modulating signal must be within the passband of

this filter. For practical probes this will be true when the

highest frequency ~~ in the band-limited modulating signal

satisfies the inequality ~MK (87cris 2) – 1.

To illustrate the use of these results, consider the miniat-

ure field probe in Fig. 14 recently developed by the U.S.

Bureau of Radiological Health (BRH) for the measurement

of amplitude-modulated fields with carrier frequencies in

the range 0.2– 12 GHz and modulating signals with

frequency content in the range 0<&2 kHz [6]. The

parameters for this probe were selected empirically. The

dipole antenna is formed from a flat strip of half length

h= 1.25 mm and width w= 50 #m; this strip is equivalent

to a round conductor with a radius a~ = w/4 = 13 pm [16].

The conductors of the high-resistance transmission line are

of length s =6.5 cm and spacing b= 50 pm. The resistance

per unit length of the thin-film conductors is r-i= 9.7,

ML?/m, and the capacitance per unit length of the trans-

mission line is cs 57 pF/m. The transmission line is ex-

tremely 10SSYat the frequencies in the range of measure-

ment; the exponential in (22) being e ‘a”< e – 54. The
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parameter x (31) is very small, x=7.1X 10”; thus the

distortion of the field pattern due to the transmission line

is negligible. The theoretical shift in the nulls of the dipole

pattern (34) is only Afl=0.04°.

The normalized total scattering cross section for the

transmission line uJO, 7r/2; O)\A~ is determined approxi-

mately by the small argument formula (62) at the lowest

frequency 0.2 GHz (&p= 0.27) and by the asymptotic

value (63) at the highest frequency 12 GHz (/3.s= 16.3).

The ratio of the total scattering cross section per unit

length of the transmission line to that for the dipole

antenna [u~(O, 7r/2; 0)/s] /[u~( T/2; 0)/2h] decreases from

104 at 0.2 GHz to 0.9 at 12 GHz.

The quantity lk~( U)S12 (71) is equal to one at the

frequency f= 34 kHz; thus a field can be measured with

little distortion when the maximum frequency in the amplit-

ude modulation is j~ K 17 kHz. This requirement is well

satisfied when the probe is used within specifications,

~~ =2 kHz.
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